MakeItFrom.com
Menu (ESC)

AISI 309Cb Stainless Steel vs. S44660 Stainless Steel

Both AISI 309Cb stainless steel and S44660 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 309Cb stainless steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
210
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 39
20
Fatigue Strength, MPa 200
330
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 84
88
Shear Modulus, GPa 78
81
Shear Strength, MPa 390
410
Tensile Strength: Ultimate (UTS), MPa 580
660
Tensile Strength: Yield (Proof), MPa 230
510

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 510
640
Maximum Temperature: Mechanical, °C 1090
1100
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
21
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 4.1
4.3
Embodied Energy, MJ/kg 59
61
Embodied Water, L/kg 170
180

Common Calculations

PREN (Pitting Resistance) 23
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
640
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.0
4.5
Thermal Shock Resistance, points 13
21

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 22 to 24
25 to 28
Iron (Fe), % 56 to 66
60.4 to 71
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 12 to 16
1.0 to 3.5
Niobium (Nb), % 0 to 1.1
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0