MakeItFrom.com
Menu (ESC)

AISI 309HCb Stainless Steel vs. 6061 Aluminum

AISI 309HCb stainless steel belongs to the iron alloys classification, while 6061 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 309HCb stainless steel and the bottom bar is 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 46
3.4 to 20
Fatigue Strength, MPa 210
58 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 410
84 to 210
Tensile Strength: Ultimate (UTS), MPa 590
130 to 410
Tensile Strength: Yield (Proof), MPa 230
76 to 370

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1090
170
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
170
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
43
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.1
8.3
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
3.8 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 130
42 to 1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
13 to 42
Strength to Weight: Bending, points 20
21 to 45
Thermal Diffusivity, mm2/s 4.0
68
Thermal Shock Resistance, points 13
5.7 to 18

Alloy Composition

Aluminum (Al), % 0
95.9 to 98.6
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 22 to 24
0.040 to 0.35
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 56 to 66
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 2.0
0 to 0.15
Nickel (Ni), % 12 to 16
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15