MakeItFrom.com
Menu (ESC)

AISI 309HCb Stainless Steel vs. AWS E316L

Both AISI 309HCb stainless steel and AWS E316L are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 309HCb stainless steel and the bottom bar is AWS E316L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Tensile Strength: Ultimate (UTS), MPa 590
550

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
20
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.1
4.0
Embodied Energy, MJ/kg 59
55
Embodied Water, L/kg 170
160

Common Calculations

PREN (Pitting Resistance) 23
27
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 13
14

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.040
Chromium (Cr), % 22 to 24
17 to 20
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 56 to 66
58.6 to 69.5
Manganese (Mn), % 0 to 2.0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 12 to 16
11 to 14
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030