MakeItFrom.com
Menu (ESC)

AISI 309HCb Stainless Steel vs. Grade CW6MC Nickel

AISI 309HCb stainless steel belongs to the iron alloys classification, while grade CW6MC nickel belongs to the nickel alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 309HCb stainless steel and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
28
Fatigue Strength, MPa 210
210
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
79
Tensile Strength: Ultimate (UTS), MPa 590
540
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 1090
980
Melting Completion (Liquidus), °C 1420
1480
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
80
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 4.1
14
Embodied Energy, MJ/kg 59
200
Embodied Water, L/kg 170
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
130
Resilience: Unit (Modulus of Resilience), kJ/m3 130
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 4.0
2.8
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.060
Chromium (Cr), % 22 to 24
20 to 23
Iron (Fe), % 56 to 66
0 to 5.0
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 12 to 16
55.4 to 68.9
Niobium (Nb), % 0 to 1.1
3.2 to 4.5
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030