MakeItFrom.com
Menu (ESC)

AISI 309HCb Stainless Steel vs. Grade CX2MW Nickel

AISI 309HCb stainless steel belongs to the iron alloys classification, while grade CX2MW nickel belongs to the nickel alloys. They have 40% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 309HCb stainless steel and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
220
Elongation at Break, % 46
34
Fatigue Strength, MPa 210
260
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
84
Tensile Strength: Ultimate (UTS), MPa 590
620
Tensile Strength: Yield (Proof), MPa 230
350

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 1090
980
Melting Completion (Liquidus), °C 1420
1550
Melting Onset (Solidus), °C 1380
1490
Specific Heat Capacity, J/kg-K 480
430
Thermal Conductivity, W/m-K 15
10
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
65
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.1
12
Embodied Energy, MJ/kg 59
170
Embodied Water, L/kg 170
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
180
Resilience: Unit (Modulus of Resilience), kJ/m3 130
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.0
2.7
Thermal Shock Resistance, points 13
17

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.020
Chromium (Cr), % 22 to 24
20 to 22.5
Iron (Fe), % 56 to 66
2.0 to 6.0
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 12 to 16
51.3 to 63
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.75
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.025
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35