MakeItFrom.com
Menu (ESC)

AISI 309HCb Stainless Steel vs. S39274 Stainless Steel

Both AISI 309HCb stainless steel and S39274 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 309HCb stainless steel and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
270
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 46
17
Fatigue Strength, MPa 210
380
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Shear Strength, MPa 410
560
Tensile Strength: Ultimate (UTS), MPa 590
900
Tensile Strength: Yield (Proof), MPa 230
620

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 510
450
Maximum Temperature: Mechanical, °C 1090
1100
Melting Completion (Liquidus), °C 1420
1480
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 4.1
4.3
Embodied Energy, MJ/kg 59
60
Embodied Water, L/kg 170
180

Common Calculations

PREN (Pitting Resistance) 23
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
140
Resilience: Unit (Modulus of Resilience), kJ/m3 130
940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
32
Strength to Weight: Bending, points 20
26
Thermal Diffusivity, mm2/s 4.0
4.2
Thermal Shock Resistance, points 13
25

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 22 to 24
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 56 to 66
57 to 65.6
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 12 to 16
6.0 to 8.0
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5