MakeItFrom.com
Menu (ESC)

AISI 309HCb Stainless Steel vs. S44535 Stainless Steel

Both AISI 309HCb stainless steel and S44535 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 84% of their average alloy composition in common.

For each property being compared, the top bar is AISI 309HCb stainless steel and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
28
Fatigue Strength, MPa 210
210
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 82
77
Shear Modulus, GPa 78
78
Shear Strength, MPa 410
290
Tensile Strength: Ultimate (UTS), MPa 590
450
Tensile Strength: Yield (Proof), MPa 230
290

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 510
450
Maximum Temperature: Mechanical, °C 1090
1000
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 4.1
2.4
Embodied Energy, MJ/kg 59
34
Embodied Water, L/kg 170
140

Common Calculations

PREN (Pitting Resistance) 23
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
16
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 4.0
5.6
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 22 to 24
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 56 to 66
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 2.0
0.3 to 0.8
Nickel (Ni), % 12 to 16
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2