MakeItFrom.com
Menu (ESC)

AISI 309S Stainless Steel vs. ASTM A182 Grade F122

Both AISI 309S stainless steel and ASTM A182 grade F122 are iron alloys. They have 74% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 309S stainless steel and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 42
23
Fatigue Strength, MPa 210
320
Poisson's Ratio 0.27
0.28
Reduction in Area, % 51
45
Shear Modulus, GPa 78
76
Shear Strength, MPa 400
450
Tensile Strength: Ultimate (UTS), MPa 580
710
Tensile Strength: Yield (Proof), MPa 230
450

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Mechanical, °C 1080
600
Melting Completion (Liquidus), °C 1420
1490
Melting Onset (Solidus), °C 1370
1440
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
24
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
12

Otherwise Unclassified Properties

Base Metal Price, % relative 19
12
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.6
3.0
Embodied Energy, MJ/kg 51
44
Embodied Water, L/kg 170
100

Common Calculations

PREN (Pitting Resistance) 23
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
140
Resilience: Unit (Modulus of Resilience), kJ/m3 140
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.0
6.4
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.080
0.070 to 0.14
Chromium (Cr), % 22 to 24
10 to 11.5
Copper (Cu), % 0
0.3 to 1.7
Iron (Fe), % 58.1 to 66
81.3 to 87.7
Manganese (Mn), % 0 to 2.0
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 12 to 15
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010