MakeItFrom.com
Menu (ESC)

AISI 309S Stainless Steel vs. C87600 Bronze

AISI 309S stainless steel belongs to the iron alloys classification, while C87600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 309S stainless steel and the bottom bar is C87600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 42
18
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 580
470
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Mechanical, °C 1080
190
Melting Completion (Liquidus), °C 1420
970
Melting Onset (Solidus), °C 1370
860
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 51
43
Embodied Water, L/kg 170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
71
Resilience: Unit (Modulus of Resilience), kJ/m3 140
240
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21
16
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 4.0
8.1
Thermal Shock Resistance, points 13
17

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
88 to 92.5
Iron (Fe), % 58.1 to 66
0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 12 to 15
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
3.5 to 5.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
4.0 to 7.0
Residuals, % 0
0 to 0.5