MakeItFrom.com
Menu (ESC)

AISI 309S Stainless Steel vs. S41045 Stainless Steel

Both AISI 309S stainless steel and S41045 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 76% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 309S stainless steel and the bottom bar is S41045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 42
25
Fatigue Strength, MPa 210
160
Poisson's Ratio 0.27
0.28
Rockwell B Hardness 84
70
Shear Modulus, GPa 78
76
Shear Strength, MPa 400
280
Tensile Strength: Ultimate (UTS), MPa 580
430
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 440
430
Maximum Temperature: Mechanical, °C 1080
740
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
29
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
8.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.2
Embodied Energy, MJ/kg 51
31
Embodied Water, L/kg 170
100

Common Calculations

PREN (Pitting Resistance) 23
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
92
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
16
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 4.0
7.8
Thermal Shock Resistance, points 13
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 22 to 24
12 to 13
Iron (Fe), % 58.1 to 66
83.8 to 88
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 12 to 15
0 to 0.5
Niobium (Nb), % 0
0 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030