MakeItFrom.com
Menu (ESC)

AISI 310 Stainless Steel vs. 3102 Aluminum

AISI 310 stainless steel belongs to the iron alloys classification, while 3102 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310 stainless steel and the bottom bar is 3102 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34 to 45
23 to 28
Fatigue Strength, MPa 240 to 280
31 to 34
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 420 to 470
58 to 65
Tensile Strength: Ultimate (UTS), MPa 600 to 710
92 to 100
Tensile Strength: Yield (Proof), MPa 260 to 350
28 to 34

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1040
180
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
640
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
56
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
190

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.0
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.3
8.2
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
5.8 to 8.3
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21 to 25
9.4 to 10
Strength to Weight: Bending, points 20 to 22
17 to 18
Thermal Diffusivity, mm2/s 3.9
92
Thermal Shock Resistance, points 14 to 17
4.1 to 4.4

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.95
Carbon (C), % 0 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 48.2 to 57
0 to 0.7
Manganese (Mn), % 0 to 2.0
0.050 to 0.4
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15