MakeItFrom.com
Menu (ESC)

AISI 310 Stainless Steel vs. ASTM A387 Grade 91 Class 2

Both AISI 310 stainless steel and ASTM A387 grade 91 class 2 are iron alloys. They have 62% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 310 stainless steel and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 220
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34 to 45
20
Fatigue Strength, MPa 240 to 280
330
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
75
Shear Strength, MPa 420 to 470
420
Tensile Strength: Ultimate (UTS), MPa 600 to 710
670
Tensile Strength: Yield (Proof), MPa 260 to 350
470

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Mechanical, °C 1040
600
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 25
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.3
2.6
Embodied Energy, MJ/kg 61
37
Embodied Water, L/kg 190
88

Common Calculations

PREN (Pitting Resistance) 25
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 25
24
Strength to Weight: Bending, points 20 to 22
22
Thermal Diffusivity, mm2/s 3.9
6.9
Thermal Shock Resistance, points 14 to 17
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.25
0.080 to 0.12
Chromium (Cr), % 24 to 26
8.0 to 9.5
Iron (Fe), % 48.2 to 57
87.3 to 90.3
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 19 to 22
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.5
0.2 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010