MakeItFrom.com
Menu (ESC)

AISI 310 Stainless Steel vs. AWS ERNiCr-3

AISI 310 stainless steel belongs to the iron alloys classification, while AWS ERNiCr-3 belongs to the nickel alloys. They have 43% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is AISI 310 stainless steel and the bottom bar is AWS ERNiCr-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34 to 45
34
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
75
Tensile Strength: Ultimate (UTS), MPa 600 to 710
630

Thermal Properties

Latent Heat of Fusion, J/g 310
320
Melting Completion (Liquidus), °C 1450
1380
Melting Onset (Solidus), °C 1400
1330
Specific Heat Capacity, J/kg-K 480
460
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 25
70
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 4.3
11
Embodied Energy, MJ/kg 61
160
Embodied Water, L/kg 190
280

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21 to 25
21
Strength to Weight: Bending, points 20 to 22
19
Thermal Shock Resistance, points 14 to 17
18

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.1
Chromium (Cr), % 24 to 26
18 to 22
Cobalt (Co), % 0
0 to 0.12
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 48.2 to 57
0 to 3.0
Manganese (Mn), % 0 to 2.0
2.5 to 3.5
Nickel (Ni), % 19 to 22
67 to 77.5
Niobium (Nb), % 0
2.0 to 3.0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.75
Residuals, % 0
0 to 0.5