MakeItFrom.com
Menu (ESC)

AISI 310 Stainless Steel vs. Grade 17 Titanium

AISI 310 stainless steel belongs to the iron alloys classification, while grade 17 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 310 stainless steel and the bottom bar is grade 17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 45
27
Fatigue Strength, MPa 240 to 280
160
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
38
Shear Strength, MPa 420 to 470
180
Tensile Strength: Ultimate (UTS), MPa 600 to 710
270
Tensile Strength: Yield (Proof), MPa 260 to 350
210

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1040
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 15
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.3

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 4.3
36
Embodied Energy, MJ/kg 61
600
Embodied Water, L/kg 190
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
68
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 25
17
Strength to Weight: Bending, points 20 to 22
21
Thermal Diffusivity, mm2/s 3.9
9.3
Thermal Shock Resistance, points 14 to 17
21

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.080
Chromium (Cr), % 24 to 26
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 48.2 to 57
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
99.015 to 99.96
Residuals, % 0
0 to 0.4