MakeItFrom.com
Menu (ESC)

AISI 310 Stainless Steel vs. C48500 Brass

AISI 310 stainless steel belongs to the iron alloys classification, while C48500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 310 stainless steel and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34 to 45
13 to 40
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 78
39
Shear Strength, MPa 420 to 470
250 to 300
Tensile Strength: Ultimate (UTS), MPa 600 to 710
400 to 500
Tensile Strength: Yield (Proof), MPa 260 to 350
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1040
120
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 4.3
2.7
Embodied Energy, MJ/kg 61
46
Embodied Water, L/kg 190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
120 to 500
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
14 to 17
Strength to Weight: Bending, points 20 to 22
15 to 17
Thermal Diffusivity, mm2/s 3.9
38
Thermal Shock Resistance, points 14 to 17
13 to 17

Alloy Composition

Carbon (C), % 0 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 48.2 to 57
0 to 0.1
Lead (Pb), % 0
1.3 to 2.2
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
34.3 to 39.2
Residuals, % 0
0 to 0.4