MakeItFrom.com
Menu (ESC)

AISI 310 Stainless Steel vs. C51100 Bronze

AISI 310 stainless steel belongs to the iron alloys classification, while C51100 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 310 stainless steel and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 45
2.5 to 50
Poisson's Ratio 0.27
0.34
Rockwell B Hardness 82
67 to 93
Shear Modulus, GPa 78
42
Shear Strength, MPa 420 to 470
230 to 410
Tensile Strength: Ultimate (UTS), MPa 600 to 710
330 to 720
Tensile Strength: Yield (Proof), MPa 260 to 350
93 to 700

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1040
190
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1400
970
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
84
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
20

Otherwise Unclassified Properties

Base Metal Price, % relative 25
32
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.3
3.0
Embodied Energy, MJ/kg 61
48
Embodied Water, L/kg 190
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
18 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
38 to 2170
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 25
10 to 22
Strength to Weight: Bending, points 20 to 22
12 to 20
Thermal Diffusivity, mm2/s 3.9
25
Thermal Shock Resistance, points 14 to 17
12 to 26

Alloy Composition

Carbon (C), % 0 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
93.8 to 96.5
Iron (Fe), % 48.2 to 57
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0.030 to 0.35
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
3.5 to 4.9
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5