MakeItFrom.com
Menu (ESC)

AISI 310 Stainless Steel vs. C66700 Brass

AISI 310 stainless steel belongs to the iron alloys classification, while C66700 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 310 stainless steel and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 45
2.0 to 58
Poisson's Ratio 0.27
0.31
Rockwell B Hardness 82
57 to 93
Shear Modulus, GPa 78
41
Shear Strength, MPa 420 to 470
250 to 530
Tensile Strength: Ultimate (UTS), MPa 600 to 710
340 to 690
Tensile Strength: Yield (Proof), MPa 260 to 350
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1040
140
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1400
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
97
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
19

Otherwise Unclassified Properties

Base Metal Price, % relative 25
25
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 4.3
2.7
Embodied Energy, MJ/kg 61
45
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
49 to 1900
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
11 to 23
Strength to Weight: Bending, points 20 to 22
13 to 21
Thermal Diffusivity, mm2/s 3.9
30
Thermal Shock Resistance, points 14 to 17
11 to 23

Alloy Composition

Carbon (C), % 0 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
68.5 to 71.5
Iron (Fe), % 48.2 to 57
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 2.0
0.8 to 1.5
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
26.3 to 30.7
Residuals, % 0
0 to 0.5