MakeItFrom.com
Menu (ESC)

AISI 310 Stainless Steel vs. C71520 Copper-nickel

AISI 310 stainless steel belongs to the iron alloys classification, while C71520 copper-nickel belongs to the copper alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 310 stainless steel and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 34 to 45
10 to 45
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 82
35 to 86
Shear Modulus, GPa 78
51
Shear Strength, MPa 420 to 470
250 to 340
Tensile Strength: Ultimate (UTS), MPa 600 to 710
370 to 570
Tensile Strength: Yield (Proof), MPa 260 to 350
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 1040
260
Melting Completion (Liquidus), °C 1450
1170
Melting Onset (Solidus), °C 1400
1120
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
32
Thermal Expansion, µm/m-K 15
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 25
40
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.3
5.0
Embodied Energy, MJ/kg 61
73
Embodied Water, L/kg 190
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
67 to 680
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
12 to 18
Strength to Weight: Bending, points 20 to 22
13 to 17
Thermal Diffusivity, mm2/s 3.9
8.9
Thermal Shock Resistance, points 14 to 17
12 to 19

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.050
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
65 to 71.6
Iron (Fe), % 48.2 to 57
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 19 to 22
28 to 33
Phosphorus (P), % 0 to 0.045
0 to 0.2
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0 to 0.020
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5