MakeItFrom.com
Menu (ESC)

AISI 310 Stainless Steel vs. S35125 Stainless Steel

Both AISI 310 stainless steel and S35125 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 310 stainless steel and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34 to 45
39
Fatigue Strength, MPa 240 to 280
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 420 to 470
370
Tensile Strength: Ultimate (UTS), MPa 600 to 710
540
Tensile Strength: Yield (Proof), MPa 260 to 350
230

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 440
490
Maximum Temperature: Mechanical, °C 1040
1100
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 25
36
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 4.3
6.4
Embodied Energy, MJ/kg 61
89
Embodied Water, L/kg 190
210

Common Calculations

PREN (Pitting Resistance) 25
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
170
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 25
19
Strength to Weight: Bending, points 20 to 22
18
Thermal Diffusivity, mm2/s 3.9
3.1
Thermal Shock Resistance, points 14 to 17
12

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.1
Chromium (Cr), % 24 to 26
20 to 23
Iron (Fe), % 48.2 to 57
36.2 to 45.8
Manganese (Mn), % 0 to 2.0
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 19 to 22
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015