MakeItFrom.com
Menu (ESC)

AISI 310Cb Stainless Steel vs. 5154A Aluminum

AISI 310Cb stainless steel belongs to the iron alloys classification, while 5154A aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310Cb stainless steel and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
58 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 39
1.1 to 19
Fatigue Strength, MPa 200
83 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 390
140 to 210
Tensile Strength: Ultimate (UTS), MPa 580
230 to 370
Tensile Strength: Yield (Proof), MPa 230
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1360
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.8
Embodied Energy, MJ/kg 69
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 140
68 to 760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 20
24 to 38
Strength to Weight: Bending, points 20
31 to 43
Thermal Diffusivity, mm2/s 3.9
53
Thermal Shock Resistance, points 13
10 to 16

Alloy Composition

Aluminum (Al), % 0
93.7 to 96.9
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 47.2 to 57
0 to 0.5
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 19 to 22
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15