MakeItFrom.com
Menu (ESC)

AISI 310Cb Stainless Steel vs. 5182 Aluminum

AISI 310Cb stainless steel belongs to the iron alloys classification, while 5182 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310Cb stainless steel and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 39
1.1 to 12
Fatigue Strength, MPa 200
100 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
25
Shear Strength, MPa 390
170 to 240
Tensile Strength: Ultimate (UTS), MPa 580
280 to 420
Tensile Strength: Yield (Proof), MPa 230
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1360
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
94

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.9
Embodied Energy, MJ/kg 69
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 140
120 to 950
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 20
29 to 44
Strength to Weight: Bending, points 20
36 to 47
Thermal Diffusivity, mm2/s 3.9
53
Thermal Shock Resistance, points 13
12 to 19

Alloy Composition

Aluminum (Al), % 0
93.2 to 95.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0 to 0.1
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 47.2 to 57
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Nickel (Ni), % 19 to 22
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15