MakeItFrom.com
Menu (ESC)

AISI 310Cb Stainless Steel vs. 7050 Aluminum

AISI 310Cb stainless steel belongs to the iron alloys classification, while 7050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310Cb stainless steel and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 39
2.2 to 12
Fatigue Strength, MPa 200
130 to 210
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
26
Shear Strength, MPa 390
280 to 330
Tensile Strength: Ultimate (UTS), MPa 580
490 to 570
Tensile Strength: Yield (Proof), MPa 230
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 310
370
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1360
490
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 28
10
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 4.8
8.2
Embodied Energy, MJ/kg 69
150
Embodied Water, L/kg 190
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1110 to 1760
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 20
45 to 51
Strength to Weight: Bending, points 20
45 to 50
Thermal Diffusivity, mm2/s 3.9
54
Thermal Shock Resistance, points 13
21 to 25

Alloy Composition

Aluminum (Al), % 0
87.3 to 92.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0 to 0.040
Copper (Cu), % 0
2.0 to 2.6
Iron (Fe), % 47.2 to 57
0 to 0.15
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 19 to 22
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0 to 0.12
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 0
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0
0 to 0.15