MakeItFrom.com
Menu (ESC)

AISI 310Cb Stainless Steel vs. EN 1.4655 Stainless Steel

Both AISI 310Cb stainless steel and EN 1.4655 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 310Cb stainless steel and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
23 to 25
Fatigue Strength, MPa 200
320
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
78
Shear Strength, MPa 390
460
Tensile Strength: Ultimate (UTS), MPa 580
720 to 730
Tensile Strength: Yield (Proof), MPa 230
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 520
440
Maximum Temperature: Mechanical, °C 1100
1050
Melting Completion (Liquidus), °C 1410
1420
Melting Onset (Solidus), °C 1360
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 4.8
2.9
Embodied Energy, MJ/kg 69
41
Embodied Water, L/kg 190
160

Common Calculations

PREN (Pitting Resistance) 25
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 140
510 to 580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
26
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 3.9
4.0
Thermal Shock Resistance, points 13
20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 24 to 26
22 to 24
Copper (Cu), % 0
1.0 to 3.0
Iron (Fe), % 47.2 to 57
63.6 to 73.4
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 19 to 22
3.5 to 5.5
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015