MakeItFrom.com
Menu (ESC)

AISI 310Cb Stainless Steel vs. C83400 Brass

AISI 310Cb stainless steel belongs to the iron alloys classification, while C83400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 310Cb stainless steel and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
30
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 580
240
Tensile Strength: Yield (Proof), MPa 230
69

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
1040
Melting Onset (Solidus), °C 1360
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
190
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
46

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 4.8
2.7
Embodied Energy, MJ/kg 69
43
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
55
Resilience: Unit (Modulus of Resilience), kJ/m3 140
21
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20
7.7
Strength to Weight: Bending, points 20
9.9
Thermal Diffusivity, mm2/s 3.9
57
Thermal Shock Resistance, points 13
8.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
88 to 92
Iron (Fe), % 47.2 to 57
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0 to 1.0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
8.0 to 12
Residuals, % 0
0 to 0.7