MakeItFrom.com
Menu (ESC)

AISI 310H Stainless Steel vs. 514.0 Aluminum

AISI 310H stainless steel belongs to the iron alloys classification, while 514.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310H stainless steel and the bottom bar is 514.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
50
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 40
7.3
Fatigue Strength, MPa 200
48
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
25
Shear Strength, MPa 400
140
Tensile Strength: Ultimate (UTS), MPa 580
180
Tensile Strength: Yield (Proof), MPa 230
74

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1360
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.3
8.9
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
11
Resilience: Unit (Modulus of Resilience), kJ/m3 130
41
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
26
Thermal Diffusivity, mm2/s 3.9
57
Thermal Shock Resistance, points 13
7.9

Alloy Composition

Aluminum (Al), % 0
93.6 to 96.5
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 49.1 to 57
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 2.0
0 to 0.35
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.35
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15