MakeItFrom.com
Menu (ESC)

AISI 310HCb Stainless Steel vs. 1200 Aluminum

AISI 310HCb stainless steel belongs to the iron alloys classification, while 1200 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310HCb stainless steel and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
23 to 48
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 46
1.1 to 28
Fatigue Strength, MPa 210
25 to 69
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 410
54 to 100
Tensile Strength: Ultimate (UTS), MPa 590
85 to 180
Tensile Strength: Yield (Proof), MPa 230
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
660
Melting Onset (Solidus), °C 1370
650
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
58
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
190

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.0
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.2
Embodied Energy, MJ/kg 69
150
Embodied Water, L/kg 190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 130
5.7 to 180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
8.7 to 19
Strength to Weight: Bending, points 20
16 to 26
Thermal Diffusivity, mm2/s 3.9
92
Thermal Shock Resistance, points 13
3.8 to 8.1

Alloy Composition

Aluminum (Al), % 0
99 to 100
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 48 to 57
0 to 1.0
Manganese (Mn), % 0 to 2.0
0 to 0.050
Nickel (Ni), % 19 to 22
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15