MakeItFrom.com
Menu (ESC)

AISI 310HCb Stainless Steel vs. 6008 Aluminum

AISI 310HCb stainless steel belongs to the iron alloys classification, while 6008 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310HCb stainless steel and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 46
9.1 to 17
Fatigue Strength, MPa 210
55 to 88
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 410
120 to 170
Tensile Strength: Ultimate (UTS), MPa 590
200 to 290
Tensile Strength: Yield (Proof), MPa 230
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1370
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
190
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
49
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
160

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.5
Embodied Energy, MJ/kg 69
160
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 130
76 to 360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
21 to 29
Strength to Weight: Bending, points 20
28 to 35
Thermal Diffusivity, mm2/s 3.9
77
Thermal Shock Resistance, points 13
9.0 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 24 to 26
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 48 to 57
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 2.0
0 to 0.3
Nickel (Ni), % 19 to 22
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15