MakeItFrom.com
Menu (ESC)

AISI 310HCb Stainless Steel vs. 6082 Aluminum

AISI 310HCb stainless steel belongs to the iron alloys classification, while 6082 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310HCb stainless steel and the bottom bar is 6082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
40 to 95
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 46
6.3 to 18
Fatigue Strength, MPa 210
55 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 410
84 to 220
Tensile Strength: Ultimate (UTS), MPa 590
140 to 340
Tensile Strength: Yield (Proof), MPa 230
85 to 320

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1370
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.3
Embodied Energy, MJ/kg 69
150
Embodied Water, L/kg 190
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
19 to 43
Resilience: Unit (Modulus of Resilience), kJ/m3 130
52 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
14 to 35
Strength to Weight: Bending, points 20
21 to 40
Thermal Diffusivity, mm2/s 3.9
67
Thermal Shock Resistance, points 13
6.0 to 15

Alloy Composition

Aluminum (Al), % 0
95.2 to 98.3
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 24 to 26
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 48 to 57
0 to 0.5
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Nickel (Ni), % 19 to 22
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.7 to 1.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15