MakeItFrom.com
Menu (ESC)

AISI 310HCb Stainless Steel vs. AWS BNi-9

AISI 310HCb stainless steel belongs to the iron alloys classification, while AWS BNi-9 belongs to the nickel alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (16, in this case) are not shown.

For each property being compared, the top bar is AISI 310HCb stainless steel and the bottom bar is AWS BNi-9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 78
72
Tensile Strength: Ultimate (UTS), MPa 590
580

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Melting Completion (Liquidus), °C 1410
1060
Melting Onset (Solidus), °C 1370
1060
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 16
12

Otherwise Unclassified Properties

Base Metal Price, % relative 28
60
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 4.8
9.3
Embodied Energy, MJ/kg 69
130
Embodied Water, L/kg 190
260

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
18
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
3.3 to 4.0
Carbon (C), % 0.040 to 0.1
0 to 0.060
Chromium (Cr), % 24 to 26
13.5 to 16.5
Cobalt (Co), % 0
0 to 0.1
Iron (Fe), % 48 to 57
0 to 1.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
77.1 to 83.3
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5