MakeItFrom.com
Menu (ESC)

AISI 310HCb Stainless Steel vs. AWS E316LMn

Both AISI 310HCb stainless steel and AWS E316LMn are iron alloys. They have 90% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AISI 310HCb stainless steel and the bottom bar is AWS E316LMn.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
23
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
79
Tensile Strength: Ultimate (UTS), MPa 590
620

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Melting Completion (Liquidus), °C 1410
1420
Melting Onset (Solidus), °C 1370
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 28
24
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.8
4.6
Embodied Energy, MJ/kg 69
64
Embodied Water, L/kg 190
180

Common Calculations

PREN (Pitting Resistance) 25
32
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
20
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.040
Chromium (Cr), % 24 to 26
18 to 21
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 48 to 57
47.5 to 59.4
Manganese (Mn), % 0 to 2.0
5.0 to 8.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 19 to 22
15 to 18
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.030