MakeItFrom.com
Menu (ESC)

AISI 310HCb Stainless Steel vs. EN 1.5414 Steel

Both AISI 310HCb stainless steel and EN 1.5414 steel are iron alloys. They have 54% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 310HCb stainless steel and the bottom bar is EN 1.5414 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 46
22
Fatigue Strength, MPa 210
250 to 270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 410
350 to 370
Tensile Strength: Ultimate (UTS), MPa 590
550 to 580
Tensile Strength: Yield (Proof), MPa 230
350 to 380

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1410
1470
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
44
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.6
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.8
1.6
Embodied Energy, MJ/kg 69
21
Embodied Water, L/kg 190
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
320 to 370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
19 to 20
Strength to Weight: Bending, points 20
19 to 20
Thermal Diffusivity, mm2/s 3.9
12
Thermal Shock Resistance, points 13
16 to 17

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.2
Chromium (Cr), % 24 to 26
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 48 to 57
96.4 to 98.7
Manganese (Mn), % 0 to 2.0
0.9 to 1.5
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 19 to 22
0 to 0.3
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.0050