MakeItFrom.com
Menu (ESC)

AISI 310HCb Stainless Steel vs. C83600 Ounce Metal

AISI 310HCb stainless steel belongs to the iron alloys classification, while C83600 ounce metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 310HCb stainless steel and the bottom bar is C83600 ounce metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 46
21
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
39
Tensile Strength: Ultimate (UTS), MPa 590
250
Tensile Strength: Yield (Proof), MPa 230
120

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1410
1010
Melting Onset (Solidus), °C 1370
850
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 15
72
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
15

Otherwise Unclassified Properties

Base Metal Price, % relative 28
31
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 4.8
3.1
Embodied Energy, MJ/kg 69
50
Embodied Water, L/kg 190
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
43
Resilience: Unit (Modulus of Resilience), kJ/m3 130
70
Stiffness to Weight: Axial, points 14
6.7
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
7.9
Strength to Weight: Bending, points 20
10
Thermal Diffusivity, mm2/s 3.9
22
Thermal Shock Resistance, points 13
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 48 to 57
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0 to 1.0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.7