MakeItFrom.com
Menu (ESC)

AISI 310HCb Stainless Steel vs. C95500 Bronze

AISI 310HCb stainless steel belongs to the iron alloys classification, while C95500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 310HCb stainless steel and the bottom bar is C95500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 46
8.4 to 10
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Tensile Strength: Ultimate (UTS), MPa 590
700 to 850
Tensile Strength: Yield (Proof), MPa 230
320 to 470

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1100
230
Melting Completion (Liquidus), °C 1410
1050
Melting Onset (Solidus), °C 1370
1040
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 15
42
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
28
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 4.8
3.5
Embodied Energy, MJ/kg 69
57
Embodied Water, L/kg 190
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
58 to 61
Resilience: Unit (Modulus of Resilience), kJ/m3 130
420 to 950
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
24 to 29
Strength to Weight: Bending, points 20
21 to 24
Thermal Diffusivity, mm2/s 3.9
11
Thermal Shock Resistance, points 13
24 to 29

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
78 to 84
Iron (Fe), % 48 to 57
3.0 to 5.0
Manganese (Mn), % 0 to 2.0
0 to 3.5
Nickel (Ni), % 19 to 22
3.0 to 5.5
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5