MakeItFrom.com
Menu (ESC)

AISI 310MoLN Stainless Steel vs. EN 1.4371 Stainless Steel

Both AISI 310MoLN stainless steel and EN 1.4371 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 310MoLN stainless steel and the bottom bar is EN 1.4371 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
45 to 51
Fatigue Strength, MPa 210
290 to 340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 400
520 to 540
Tensile Strength: Ultimate (UTS), MPa 610
740 to 750
Tensile Strength: Yield (Proof), MPa 290
320 to 340

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
410
Maximum Temperature: Mechanical, °C 1100
880
Melting Completion (Liquidus), °C 1420
1410
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 5.0
2.6
Embodied Energy, MJ/kg 70
38
Embodied Water, L/kg 200
140

Common Calculations

PREN (Pitting Resistance) 34
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
270 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 200
250 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
27
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 3.7
4.0
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.030
Chromium (Cr), % 24 to 26
16 to 17.5
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 45.2 to 53.8
66.7 to 74.4
Manganese (Mn), % 0 to 2.0
6.0 to 8.0
Molybdenum (Mo), % 1.6 to 2.6
0
Nickel (Ni), % 20.5 to 23.5
3.5 to 5.5
Nitrogen (N), % 0.090 to 0.15
0.15 to 0.25
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015