MakeItFrom.com
Menu (ESC)

AISI 310MoLN Stainless Steel vs. C47940 Brass

AISI 310MoLN stainless steel belongs to the iron alloys classification, while C47940 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 310MoLN stainless steel and the bottom bar is C47940 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
14 to 34
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 80
40
Shear Strength, MPa 400
250 to 310
Tensile Strength: Ultimate (UTS), MPa 610
380 to 520
Tensile Strength: Yield (Proof), MPa 290
160 to 390

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1420
850
Melting Onset (Solidus), °C 1380
800
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 16
20

Otherwise Unclassified Properties

Base Metal Price, % relative 28
25
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 5.0
2.8
Embodied Energy, MJ/kg 70
47
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
68 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 200
120 to 740
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21
13 to 17
Strength to Weight: Bending, points 20
14 to 17
Thermal Diffusivity, mm2/s 3.7
36
Thermal Shock Resistance, points 14
13 to 17

Alloy Composition

Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
63 to 66
Iron (Fe), % 45.2 to 53.8
0.1 to 1.0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.6 to 2.6
0
Nickel (Ni), % 20.5 to 23.5
0.1 to 0.5
Nitrogen (N), % 0.090 to 0.15
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
1.2 to 2.0
Zinc (Zn), % 0
28.1 to 34.6
Residuals, % 0
0 to 0.4