MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. 535.0 Aluminum

AISI 310S stainless steel belongs to the iron alloys classification, while 535.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
70
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 34 to 44
10
Fatigue Strength, MPa 250 to 280
70
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
25
Shear Strength, MPa 420 to 470
190
Tensile Strength: Ultimate (UTS), MPa 600 to 710
270
Tensile Strength: Yield (Proof), MPa 270 to 350
140

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 16
100
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
79

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 4.3
9.4
Embodied Energy, MJ/kg 61
160
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
24
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 21 to 25
28
Strength to Weight: Bending, points 20 to 22
35
Thermal Diffusivity, mm2/s 4.1
42
Thermal Shock Resistance, points 14 to 16
12

Alloy Composition

Aluminum (Al), % 0
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 48.3 to 57
0 to 0.15
Magnesium (Mg), % 0
6.2 to 7.5
Manganese (Mn), % 0 to 2.0
0.1 to 0.25
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15