MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. 7021 Aluminum

AISI 310S stainless steel belongs to the iron alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34 to 44
9.4
Fatigue Strength, MPa 250 to 280
150
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
26
Shear Strength, MPa 420 to 470
270
Tensile Strength: Ultimate (UTS), MPa 600 to 710
460
Tensile Strength: Yield (Proof), MPa 270 to 350
390

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
510
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 16
150
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 4.3
8.3
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 190
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
41
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
1110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 21 to 25
44
Strength to Weight: Bending, points 20 to 22
45
Thermal Diffusivity, mm2/s 4.1
59
Thermal Shock Resistance, points 14 to 16
20

Alloy Composition

Aluminum (Al), % 0
90.7 to 93.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0 to 0.050
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 48.3 to 57
0 to 0.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15