MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. ASTM B817 Type I

AISI 310S stainless steel belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34 to 44
4.0 to 13
Fatigue Strength, MPa 250 to 280
360 to 520
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 600 to 710
770 to 960
Tensile Strength: Yield (Proof), MPa 270 to 350
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
340
Melting Completion (Liquidus), °C 1450
1600
Melting Onset (Solidus), °C 1400
1550
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 16
7.1
Thermal Expansion, µm/m-K 16
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 25
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 4.3
38
Embodied Energy, MJ/kg 61
610
Embodied Water, L/kg 190
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
2310 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 25
48 to 60
Strength to Weight: Bending, points 20 to 22
42 to 49
Thermal Diffusivity, mm2/s 4.1
2.9
Thermal Shock Resistance, points 14 to 16
54 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.080
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 24 to 26
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 48.3 to 57
0 to 0.4
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4