MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. ASTM Grade HT Steel

Both AISI 310S stainless steel and ASTM grade HT steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is ASTM grade HT steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34 to 44
4.6
Fatigue Strength, MPa 250 to 280
130
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
76
Tensile Strength: Ultimate (UTS), MPa 600 to 710
500
Tensile Strength: Yield (Proof), MPa 270 to 350
270

Thermal Properties

Latent Heat of Fusion, J/g 310
310
Maximum Temperature: Corrosion, °C 450
400
Maximum Temperature: Mechanical, °C 1100
1010
Melting Completion (Liquidus), °C 1450
1390
Melting Onset (Solidus), °C 1400
1340
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 25
31
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.3
5.4
Embodied Energy, MJ/kg 61
76
Embodied Water, L/kg 190
190

Common Calculations

PREN (Pitting Resistance) 25
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
19
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 25
18
Strength to Weight: Bending, points 20 to 22
18
Thermal Diffusivity, mm2/s 4.1
3.2
Thermal Shock Resistance, points 14 to 16
12

Alloy Composition

Carbon (C), % 0 to 0.080
0.35 to 0.75
Chromium (Cr), % 24 to 26
15 to 19
Iron (Fe), % 48.3 to 57
38.2 to 51.7
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 19 to 22
33 to 37
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 2.5
Sulfur (S), % 0 to 0.030
0 to 0.040