MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. AWS E330

Both AISI 310S stainless steel and AWS E330 are iron alloys. They have 84% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is AWS E330.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34 to 44
29
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
76
Tensile Strength: Ultimate (UTS), MPa 600 to 710
580

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1400
1350
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 25
31
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 4.3
5.4
Embodied Energy, MJ/kg 61
75
Embodied Water, L/kg 190
180

Common Calculations

PREN (Pitting Resistance) 25
17
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 25
20
Strength to Weight: Bending, points 20 to 22
19
Thermal Diffusivity, mm2/s 4.1
3.2
Thermal Shock Resistance, points 14 to 16
16

Alloy Composition

Carbon (C), % 0 to 0.080
0.18 to 0.25
Chromium (Cr), % 24 to 26
14 to 17
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 48.3 to 57
40.7 to 51.8
Manganese (Mn), % 0 to 2.0
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 19 to 22
33 to 37
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030