MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. EN AC-43400 Aluminum

AISI 310S stainless steel belongs to the iron alloys classification, while EN AC-43400 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
80
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 34 to 44
1.1
Fatigue Strength, MPa 250 to 280
110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 600 to 710
270
Tensile Strength: Yield (Proof), MPa 270 to 350
160

Thermal Properties

Latent Heat of Fusion, J/g 310
540
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 4.3
7.8
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 190
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 21 to 25
29
Strength to Weight: Bending, points 20 to 22
36
Thermal Diffusivity, mm2/s 4.1
59
Thermal Shock Resistance, points 14 to 16
12

Alloy Composition

Aluminum (Al), % 0
86 to 90.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 48.3 to 57
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 2.0
0 to 0.55
Nickel (Ni), % 19 to 22
0 to 0.15
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15