MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. C28000 Muntz Metal

AISI 310S stainless steel belongs to the iron alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34 to 44
10 to 45
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
40
Shear Strength, MPa 420 to 470
230 to 330
Tensile Strength: Ultimate (UTS), MPa 600 to 710
330 to 610
Tensile Strength: Yield (Proof), MPa 270 to 350
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1400
900
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
31

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.3
2.7
Embodied Energy, MJ/kg 61
46
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
110 to 670
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 25
11 to 21
Strength to Weight: Bending, points 20 to 22
13 to 20
Thermal Diffusivity, mm2/s 4.1
40
Thermal Shock Resistance, points 14 to 16
11 to 20

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 48.3 to 57
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0
0 to 0.3