MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. C84400 Valve Metal

AISI 310S stainless steel belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34 to 44
19
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 600 to 710
230
Tensile Strength: Yield (Proof), MPa 270 to 350
110

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1400
840
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 16
72
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 25
29
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 4.3
2.8
Embodied Energy, MJ/kg 61
46
Embodied Water, L/kg 190
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
36
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
58
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 25
7.2
Strength to Weight: Bending, points 20 to 22
9.4
Thermal Diffusivity, mm2/s 4.1
22
Thermal Shock Resistance, points 14 to 16
8.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 48.3 to 57
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7