MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. C85200 Brass

AISI 310S stainless steel belongs to the iron alloys classification, while C85200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 44
28
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 600 to 710
270
Tensile Strength: Yield (Proof), MPa 270 to 350
95

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1450
940
Melting Onset (Solidus), °C 1400
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
84
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
18
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
19

Otherwise Unclassified Properties

Base Metal Price, % relative 25
26
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 4.3
2.8
Embodied Energy, MJ/kg 61
46
Embodied Water, L/kg 190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
59
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
42
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
8.9
Strength to Weight: Bending, points 20 to 22
11
Thermal Diffusivity, mm2/s 4.1
27
Thermal Shock Resistance, points 14 to 16
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
70 to 74
Iron (Fe), % 48.3 to 57
0 to 0.6
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.5
0 to 0.050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0.7 to 2.0
Zinc (Zn), % 0
20 to 27
Residuals, % 0
0 to 0.9