MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. S32520 Stainless Steel

Both AISI 310S stainless steel and S32520 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is S32520 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34 to 44
28
Fatigue Strength, MPa 250 to 280
460
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 79
80
Shear Strength, MPa 420 to 470
560
Tensile Strength: Ultimate (UTS), MPa 600 to 710
860
Tensile Strength: Yield (Proof), MPa 270 to 350
630

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 450
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
20
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
4.0
Embodied Energy, MJ/kg 61
55
Embodied Water, L/kg 190
180

Common Calculations

PREN (Pitting Resistance) 25
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
220
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
960
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 25
31
Strength to Weight: Bending, points 20 to 22
26
Thermal Diffusivity, mm2/s 4.1
4.1
Thermal Shock Resistance, points 14 to 16
24

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 24 to 26
24 to 26
Copper (Cu), % 0
0.5 to 2.0
Iron (Fe), % 48.3 to 57
57.3 to 66.8
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 19 to 22
5.5 to 8.0
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.5
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.020