MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. S44635 Stainless Steel

Both AISI 310S stainless steel and S44635 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
240
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34 to 44
23
Fatigue Strength, MPa 250 to 280
390
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 79
81
Shear Strength, MPa 420 to 470
450
Tensile Strength: Ultimate (UTS), MPa 600 to 710
710
Tensile Strength: Yield (Proof), MPa 270 to 350
580

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 450
610
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
22
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
4.4
Embodied Energy, MJ/kg 61
62
Embodied Water, L/kg 190
170

Common Calculations

PREN (Pitting Resistance) 25
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
150
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
810
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 25
25
Strength to Weight: Bending, points 20 to 22
23
Thermal Diffusivity, mm2/s 4.1
4.4
Thermal Shock Resistance, points 14 to 16
23

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.025
Chromium (Cr), % 24 to 26
24.5 to 26
Iron (Fe), % 48.3 to 57
61.5 to 68.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 19 to 22
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8