MakeItFrom.com
Menu (ESC)

AISI 312 Stainless Steel vs. EN 1.0566 Steel

Both AISI 312 stainless steel and EN 1.0566 steel are iron alloys. They have 67% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 312 stainless steel and the bottom bar is EN 1.0566 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
24
Fatigue Strength, MPa 370
270
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 510
350
Tensile Strength: Ultimate (UTS), MPa 780
550
Tensile Strength: Yield (Proof), MPa 510
370

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
50
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 17
2.3
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.6
Embodied Energy, MJ/kg 48
22
Embodied Water, L/kg 170
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 640
360
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 24
19
Thermal Diffusivity, mm2/s 4.3
14
Thermal Shock Resistance, points 21
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.030
0 to 0.18
Chromium (Cr), % 24 to 26
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 62.2 to 69.2
96.2 to 98.9
Manganese (Mn), % 0 to 2.0
1.1 to 1.7
Molybdenum (Mo), % 1.2 to 2.0
0 to 0.080
Nickel (Ni), % 5.5 to 6.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.14 to 0.2
0 to 0.012
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.1