MakeItFrom.com
Menu (ESC)

AISI 312 Stainless Steel vs. Titanium 6-6-2

AISI 312 stainless steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 312 stainless steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
6.7 to 9.0
Fatigue Strength, MPa 370
590 to 670
Poisson's Ratio 0.27
0.32
Reduction in Area, % 56
17 to 23
Shear Modulus, GPa 80
44
Shear Strength, MPa 510
670 to 800
Tensile Strength: Ultimate (UTS), MPa 780
1140 to 1370
Tensile Strength: Yield (Proof), MPa 510
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1430
1610
Melting Onset (Solidus), °C 1390
1560
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
5.5
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 17
40
Density, g/cm3 7.7
4.8
Embodied Carbon, kg CO2/kg material 3.4
29
Embodied Energy, MJ/kg 48
470
Embodied Water, L/kg 170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
89 to 99
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 28
66 to 79
Strength to Weight: Bending, points 24
50 to 57
Thermal Diffusivity, mm2/s 4.3
2.1
Thermal Shock Resistance, points 21
75 to 90

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 62.2 to 69.2
0.35 to 1.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.2 to 2.0
5.0 to 6.0
Nickel (Ni), % 5.5 to 6.5
0
Nitrogen (N), % 0.14 to 0.2
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0
0 to 0.4