MakeItFrom.com
Menu (ESC)

AISI 312 Stainless Steel vs. C69710 Brass

AISI 312 stainless steel belongs to the iron alloys classification, while C69710 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 312 stainless steel and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
25
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
41
Shear Strength, MPa 510
300
Tensile Strength: Ultimate (UTS), MPa 780
470
Tensile Strength: Yield (Proof), MPa 510
230

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1430
930
Melting Onset (Solidus), °C 1390
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 17
26
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 48
44
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
99
Resilience: Unit (Modulus of Resilience), kJ/m3 640
250
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28
16
Strength to Weight: Bending, points 24
16
Thermal Diffusivity, mm2/s 4.3
12
Thermal Shock Resistance, points 21
16

Alloy Composition

Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
75 to 80
Iron (Fe), % 62.2 to 69.2
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 2.0
0 to 0.4
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.5 to 6.5
0
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
2.5 to 3.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
13.8 to 22
Residuals, % 0
0 to 0.5