MakeItFrom.com
Menu (ESC)

AISI 312 Stainless Steel vs. S43037 Stainless Steel

Both AISI 312 stainless steel and S43037 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 84% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 312 stainless steel and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
25
Fatigue Strength, MPa 370
160
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 510
260
Tensile Strength: Ultimate (UTS), MPa 780
410
Tensile Strength: Yield (Proof), MPa 510
230

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
510
Maximum Temperature: Mechanical, °C 1100
880
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.3
Embodied Energy, MJ/kg 48
32
Embodied Water, L/kg 170
120

Common Calculations

PREN (Pitting Resistance) 33
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
88
Resilience: Unit (Modulus of Resilience), kJ/m3 640
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
15
Strength to Weight: Bending, points 24
16
Thermal Diffusivity, mm2/s 4.3
6.7
Thermal Shock Resistance, points 21
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 24 to 26
16 to 19
Iron (Fe), % 62.2 to 69.2
77.9 to 83.9
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.5 to 6.5
0
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.1 to 1.0